CONTENTS

General Introduction xxii

Part I Semiconductor Fundamentals 1

Chapter 1 Semiconductors: A General Introduction 3

1.1 General Material Properties 3
 1.1.1 Composition 3
 1.1.2 Purity 5
 1.1.3 Structure 6

1.2 Crystal Structure 6
 1.2.1 The Unit Cell Concept 7
 1.2.2 Simple 3-D Unit Cells 8
 1.2.3 Semiconductor Lattices 9
 1.2.4 Miller Indices 12

1.3 Crystal Growth 16
 1.3.1 Obtaining Ultrapure Si 16
 1.3.2 Single-Crystal Formation 17

1.4 Summary 19

Problems 19

Chapter 2 Carrier Modeling 23

2.1 The Quantization Concept 23

2.2 Semiconductor Models 25
 2.2.1 Bonding Model 26
 2.2.2 Energy Band Model 26
 2.2.3 Carriers 29

2.2.4 Band Gap and Material Classification 31

2.3 Carrier Properties 32
 2.3.1 Charge 32
 2.3.2 Effective Mass 32
 2.3.3 Carrier Numbers in Intrinsic Material 34
Chapter 3 Carrier Action

3.1 Drift

3.1.1 Definition—Visualization

3.1.2 Drift Current

3.1.3 Mobility

3.1.4 Resistivity

3.1.5 Band Bending

3.2 Diffusion

3.2.1 Definition—Visualization

3.2.2 Hot-Point Probe Measurement

3.2.3 Diffusion and Total Currents

Diffusion Currents

Total Currents

3.2.4 Relating Diffusion Coefficients/Mobilities

Constancy of the Fermi Level

Current Flow Under Equilibrium Conditions

Einstein Relationship

3.3 Recombination—Generation

3.3.1 Definition—Visualization

Band-to-Band Recombination
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>R–G Center Recombination</td>
<td>105</td>
</tr>
<tr>
<td>Auger Recombination</td>
<td>107</td>
</tr>
<tr>
<td>Generation Processes</td>
<td>107</td>
</tr>
<tr>
<td>3.3.2 Momentum Considerations</td>
<td>107</td>
</tr>
<tr>
<td>3.3.3 R–G Statistics</td>
<td>110</td>
</tr>
<tr>
<td>Photogeneration</td>
<td>110</td>
</tr>
<tr>
<td>Indirect Thermal Recombination—Generation</td>
<td>112</td>
</tr>
<tr>
<td>3.3.4 Minority Carrier Lifetimes</td>
<td>116</td>
</tr>
<tr>
<td>General Information</td>
<td>116</td>
</tr>
<tr>
<td>A Lifetime Measurement</td>
<td>116</td>
</tr>
<tr>
<td>3.4 Equations of State</td>
<td>120</td>
</tr>
<tr>
<td>3.4.1 Continuity Equations</td>
<td>121</td>
</tr>
<tr>
<td>3.4.2 Minority Carrier Diffusion Equations</td>
<td>122</td>
</tr>
<tr>
<td>3.4.3 Simplifications and Solutions</td>
<td>124</td>
</tr>
<tr>
<td>3.4.4 Problem Solving</td>
<td>124</td>
</tr>
<tr>
<td>Sample Problem No. 1</td>
<td>124</td>
</tr>
<tr>
<td>Sample Problem No. 2</td>
<td>128</td>
</tr>
<tr>
<td>3.5 Supplemental Concepts</td>
<td>131</td>
</tr>
<tr>
<td>3.5.1 Diffusion Lengths</td>
<td>131</td>
</tr>
<tr>
<td>3.5.2 Quasi-Fermi Levels</td>
<td>132</td>
</tr>
<tr>
<td>3.6 Summary and Concluding Comments</td>
<td>136</td>
</tr>
<tr>
<td>Problems</td>
<td>138</td>
</tr>
</tbody>
</table>

Chapter 4 Basics of Device Fabrication

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Fabrication Processes</td>
<td>149</td>
</tr>
<tr>
<td>4.1.1 Oxidation</td>
<td>149</td>
</tr>
<tr>
<td>4.1.2 Diffusion</td>
<td>152</td>
</tr>
<tr>
<td>4.1.3 Ion Implantation</td>
<td>155</td>
</tr>
<tr>
<td>4.1.4 Lithography</td>
<td>159</td>
</tr>
<tr>
<td>4.1.5 Thin-Film Deposition</td>
<td>162</td>
</tr>
<tr>
<td>Evaporation</td>
<td>162</td>
</tr>
<tr>
<td>Sputtering</td>
<td>162</td>
</tr>
<tr>
<td>Chemical Vapor Deposition (CVD)</td>
<td>164</td>
</tr>
<tr>
<td>4.1.6 Epitaxy</td>
<td>164</td>
</tr>
<tr>
<td>4.2 Device Fabrication Examples</td>
<td>165</td>
</tr>
<tr>
<td>4.2.1 (pn) Junction Diode Fabrication</td>
<td>166</td>
</tr>
<tr>
<td>4.2.2 Computer CPU Process Flow</td>
<td>166</td>
</tr>
<tr>
<td>4.3 Summary</td>
<td>174</td>
</tr>
</tbody>
</table>
Part IIA pn Junction Diodes

Chapter 5 pn Junction Electrostatics

5.1 Preliminaries
5.1.1 Junction Terminology/Idealized Profiles
5.1.2 Poisson’s Equation
5.1.3 Qualitative Solution
5.1.4 The Built-in Potential (V_{bi})
5.1.5 The Depletion Approximation

5.2 Quantitative Electrostatic Relationships
5.2.1 Assumptions/Definitions
5.2.2 Step Junction with $V_A = 0$
 Solution for ρ
 Solution for ε
 Solution for V
 Solution for x_n and x_p
5.2.3 Step Junction with $V_A \neq 0$
5.2.4 Examination/Extrapolation of Results
5.2.5 Linearly Graded Junctions

5.3 Summary
Problems

Chapter 6 pn Junction Diode: I–V Characteristics

6.1 The Ideal Diode Equation
6.1.1 Qualitative Derivation
6.1.2 Quantitative Solution Strategy
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Game Plan" Summary</td>
<td>246</td>
</tr>
<tr>
<td>6.1.3 Derivation Proper</td>
<td>247</td>
</tr>
<tr>
<td>6.1.4 Examination of Results</td>
<td>249</td>
</tr>
<tr>
<td>Ideal $I-V$</td>
<td>249</td>
</tr>
<tr>
<td>The Saturation Current</td>
<td>250</td>
</tr>
<tr>
<td>Carrier Currents</td>
<td>254</td>
</tr>
<tr>
<td>Carrier Concentrations</td>
<td>255</td>
</tr>
<tr>
<td>6.2 Deviations from the Ideal</td>
<td>260</td>
</tr>
<tr>
<td>6.2.1 Ideal Theory Versus Experiment</td>
<td>260</td>
</tr>
<tr>
<td>6.2.2 Reverse-Bias Breakdown</td>
<td>263</td>
</tr>
<tr>
<td>Avalanching</td>
<td>264</td>
</tr>
<tr>
<td>Zener Process</td>
<td>268</td>
</tr>
<tr>
<td>6.2.3 The R–G Current</td>
<td>270</td>
</tr>
<tr>
<td>6.2.4 $V_A \rightarrow V_{bi}$ High-Current Phenomena</td>
<td>277</td>
</tr>
<tr>
<td>Series Resistance</td>
<td>278</td>
</tr>
<tr>
<td>High-Level Injection</td>
<td>279</td>
</tr>
<tr>
<td>6.3 Special Considerations</td>
<td>281</td>
</tr>
<tr>
<td>6.3.1 Charge Control Approach</td>
<td>282</td>
</tr>
<tr>
<td>6.3.2 Narrow-Base Diode</td>
<td>284</td>
</tr>
<tr>
<td>Current Derivation</td>
<td>284</td>
</tr>
<tr>
<td>Limiting Cases/Punch-Through</td>
<td>286</td>
</tr>
<tr>
<td>6.4 Summary and Concluding Comments</td>
<td>288</td>
</tr>
<tr>
<td>Problems</td>
<td>289</td>
</tr>
</tbody>
</table>

Chapter 7 *pn* Junction Diode: Small-Signal Admittance
301

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>301</td>
</tr>
<tr>
<td>7.2 Reverse-Bias Junction Capacitance</td>
<td>301</td>
</tr>
<tr>
<td>7.2.1 General Information</td>
<td>301</td>
</tr>
<tr>
<td>7.2.2 C–V Relationships</td>
<td>305</td>
</tr>
<tr>
<td>7.2.3 Parameter Extraction/Profiling</td>
<td>309</td>
</tr>
<tr>
<td>7.2.4 Reverse-Bias Conductance</td>
<td>313</td>
</tr>
<tr>
<td>7.3 Forward-Bias Diffusion Admittance</td>
<td>315</td>
</tr>
<tr>
<td>7.3.1 General Information</td>
<td>315</td>
</tr>
<tr>
<td>7.3.2 Admittance Relationships</td>
<td>318</td>
</tr>
<tr>
<td>7.4 Summary</td>
<td>323</td>
</tr>
<tr>
<td>Problems</td>
<td>324</td>
</tr>
</tbody>
</table>
Chapter 8 *pn* Junction Diode: Transient Response

8.1 Turn-Off Transient
 8.1.1 Introduction
 8.1.2 Qualitative Analysis
 8.1.3 The Storage Delay Time
 Quantitative Analysis
 Measurement
 8.1.4 General Information
8.2 Turn-On Transient
8.3 Summary
Problems

Chapter 9 Optoelectronic Diodes

9.1 Introduction
9.2 Photodiodes
 9.2.1 *pn* Junction Photodiodes
 9.2.2 *p-i-n* and Avalanche Photodiodes
 p-i-n Photodiodes
 Avalanche Photodiodes
9.3 Solar Cells
 9.3.1 Solar Cell Basics
 9.3.2 Efficiency Considerations
 9.3.3 Solar Cell Technology
9.4 LEDs
 9.4.1 General Overview
 9.4.2 Commercial LEDs
 9.4.3 LED Packaging and Photon Extraction

Part IIB BJTs and Other Junction Devices

Chapter 10 BJT Fundamentals

10.1 Terminology
10.2 Fabrication
10.3 Electrostatics
10.4 Introductory Operational Considerations
10.5 Performance Parameters
 Emitter Efficiency
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Transport Factor</td>
<td>383</td>
</tr>
<tr>
<td>Common Base d.c. Current Gain</td>
<td>383</td>
</tr>
<tr>
<td>Common Emitter d.c. Current Gain</td>
<td>384</td>
</tr>
<tr>
<td>10.6 Summary</td>
<td>385</td>
</tr>
<tr>
<td>Problems</td>
<td>385</td>
</tr>
</tbody>
</table>

Chapter 11 BJT Static Characteristics

11.1 Ideal Transistor Analysis

- 11.1.1 Solution Strategy
 - Basic Assumptions
 - Notation
 - Diffusion Equations/Boundary Conditions
 - Computational Relationships

- 11.1.2 General Solution (W Arbitrary)
 - Emitter/Collector Region Solutions
 - Base Region Solution
 - Performance Parameters/Terminal Currents

- 11.1.3 Simplified Relationships ($W \ll L_B$)
 - $\Delta p_B(x)$ in the Base
 - Performance Parameters

- 11.1.4 Ebers–Moll Equations and Model

11.2 Deviations from the Ideal

- 11.2.1 Ideal Theory/Experiment Comparison
- 11.2.2 Base Width Modulation
- 11.2.3 Punch-Through
- 11.2.4 Avalanche Multiplication and Breakdown
 - Common Base
 - Common Emitter
- 11.2.5 Geometrical Effects
 - Emitter Area ≠ Collector Area
 - Series Resistances
 - Current Crowding
- 11.2.6 Recombination–Generation Current

- 11.2.7 Graded Base
- 11.2.8 Figures of Merit

11.3 Modern BJT Structures

- 11.3.1 Polysilicon Emitter BJT
- 11.3.2 Heterojunction Bipolar Transistor (HBT)
Chapter 12 BJT Dynamic Response Modeling

12.1 Small-Signal Equivalent Circuits
 12.1.1 Generalized Two-Port Model
 12.1.2 Hybrid-Pi Models

12.2 Transient (Switching) Response
 12.2.1 Qualitative Observations
 12.2.2 Charge Control Relationships
 12.2.3 Quantitative Analysis
 Turn-on Transient
 Turn-off Transient
 12.2.4 Practical Considerations

12.3 Summary

Problems

Chapter 13 PNPN Devices

13.1 Silicon Controlled Rectifier (SCR)
13.2 SCR Operational Theory
13.3 Practical Turn-on/Turn-off Considerations
 13.3.1 Circuit Operation
 13.3.2 Additional Triggering Mechanisms
 13.3.3 Shorted-Cathode Configuration
 13.3.4 di/dt and dv/dt Effects
 13.3.5 Triggering Time
 13.3.6 Switching Advantages/Disadvantages

13.4 Other PNPN Devices

Chapter 14 MS Contacts and Schottky Diodes

14.1 Ideal MS Contacts
14.2 Schottky Diode
 14.2.1 Electrostatics
 Built-in Voltage
 ρ, ε, V
 Depletion Width
 14.2.2 $I-V$ Characteristics
 14.2.3 a.c. Response
14.2.4 Transient Response 496

14.3 Practical Contact Considerations 497
 14.3.1 Rectifying Contacts 497
 14.3.2 Ohmic Contacts 498

14.4 Summary 500

Problems 501

R2 Part II Supplement and Review 505

Alternative/Supplemental Reading List 505

Figure Sources/Cited References 506

Review List of Terms 507

Part II—Review Problem Sets and Answers 508

Part III Field Effect Devices 523

Chapter 15 Field Effect Introduction—The J-FET and MESFET 525

 15.1 General Introduction 525
 15.2 J-FET 530
 15.2.1 Introduction 530
 15.2.2 Qualitative Theory of Operation 531
 15.2.3 Quantitative I_D-V_D Relationships 536
 15.2.4 a.c. Response 547
 15.3 MESFET 550
 15.3.1 General Information 550
 15.3.2 Short-Channel Considerations 552
 Variable Mobility Model 553
 Saturated Velocity Model 554
 Two-Region Model 555

 15.4 Summary 557

Problems 557

Chapter 16 MOS Fundamentals 563

 16.1 Ideal Structure Definition 563

 16.2 Electrostatics—Mostly Qualitative 565
 16.2.1 Visualization Aids 565
 Energy Band Diagram 565
 Block Charge Diagrams 566
18.2 Oxide Charges
18.2.1 General Information
18.2.2 Mobile Ions
18.2.3 The Fixed Charge
18.2.4 Interfacial Traps
18.2.5 Induced Charges
 Radiation Effects
 Negative-Bias Instability
18.2.6 ΔV_G Summary
18.3 MOSFET Threshold Considerations
18.3.1 V_T Relationships
18.3.2 Threshold, Terminology, and Technology
18.3.3 Threshold Adjustment
18.3.4 Back Biasing
18.3.5 Threshold Summary

Problems

Chapter 19 Modern FET Structures
19.1 Small Dimension Effects
19.1.1 Introduction
19.1.2 Threshold Voltage Modification
 Short Channel
 Narrow Width
19.1.3 Parasitic BJT Action
19.1.4 Hot-Carrier Effects
 Oxide Charging
 Velocity Saturation
 Velocity Overshoot/Ballistic Transport
19.2 Select Structure Survey
19.2.1 MOSFET Structures
 LDD Transistors
 DMOS
 Buried-Channel MOSFET
 SiGe Devices
 SOI Structures
19.2.2 MODFET (HEMT)

Problems
Appendices

Appendix A Elements of Quantum Mechanics

- **A.1 The Quantization Concept**
 - A.1.1 Blackbody Radiation
 - A.1.2 The Bohr Atom
 - A.1.3 Wave-Particle Duality
- **A.2 Basic Formalism**
- **A.3 Electronic States in Atoms**
 - A.3.1 The Hydrogen Atom
 - A.3.2 Multi-Electron Atoms

Appendix B MOS Semiconductor Electrostatics—Exact Solution

- Definition of Parameters
- Exact Solution

Appendix C MOS $C-V$ Supplement

Appendix D MOS $I-V$ Supplement

Appendix E List of Symbols

Appendix M MATLAB Program Script

- Exercise 10.2 (BJT_Eband)
- Exercise 11.7 (BJT) and Exercise 11.10 (BJTplus)
- Exercise 16.5 (MOS_CV)

Index